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Autocatalytic and other general networks 
for chemical mechanisms, pathways, and cycles: 

Their systematic and topological generation 

O k t a y  S i n a n o ~ l u  

Department of Chemistry and Department of Molecular Biochemistry~Biophysics, 
Yale University, 225 Prospect Street, P.O. Box 6666, New Haven, CT 06511, USA 

Methods to generate a priori all the finite number of possible mechanisms of 
chemical reactions and/or synthetic pathways or thermodynamic cycles, which we represent 
by general networks, are given for any number of reaction steps or total number of 
species (reactants, products, catalysts, and intermediates). General networks do not 
place limitations on the types of species, e.g. intermediates can be short-lived, thereby 
participating in at most two elementary reaction steps, or longer-lived, participating in 
more than one way. Step stoichiometric coefficients can be more than unity. Reactants 
or products may also act as catalysts or inhibitors. Species vertices and the general 
networks themselves in which they occur are classified topologically. Topological invariants 
of the networks with respect to the number of reaction steps are found. Mechanisms 
with desired features, e.g. containing certain numbers of generalized catalysts, chains, 
autocatalysts, etc., are generated using the invariants, from the simplest prototypes, for 
successively larger numbers of reaction steps. Special emphasis is given to autocatalytic 
networks due to their role in chemical oscillations, dynamical instabilities and in self- 
replicating reactions. Examples given include the malic acid cycle, oscillatory cycles 
in glycolysis, Lotka-Volterra-Prigogine-Glansdorff  models, and others. Oscillating 
and/or self-replicating cycles that have been invoked in various contexts are shown to 
have a common topological feature. The methods are useful also in the many autocatalytic 
processes of chemical engineering importance. 

1. Introduction 

Recently, it has become possible to introduce a good amount of systematics 
into the finding of reaction mechanisms [1]. In the past, experimentalists have 
proposed various mechanisms for specific observed reactions, but any systematic 
way of arriving at the possible mechanisms had been missing. In the first paper (I) 
[1 ], it was noted that for a given overall reaction type such as A + B =,  C + D, etc. 
with any A, B, C, D, as long as the equation obeys stoichiometry there are only a 
fairly small and finite number of possible mechanisms once the number p of 
elementary steps, or alternatively, the number o" of chemical species-moles to be 
admitted, are chosen. In fact, p and cr largely fix each other within narrow limits 
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(the o-(p)-plot) [1 ]. Mechanisms were denoted by simple networks drawn and their 
more compact skeletons [1 ]. 

Although skeletons, classified topologically in paper I [ 1 ] with respect to the 
numbers of catalytic, chain reaction, feedback, etc. loops they contain, were general 
in obtaining all the possible mechanisms/networks for various overall reactions, it 
was found to be convenient to deal with two broad types of mechanisms/networks: 
(i) laminar networks, and (ii) turbulent networks [1]. 

"Laminar mechanisms" [1] are the ones in which: (a) the stoichiometric 
coefficients vi of any species i in the elementary reaction steps are I vii = 1 or 0; (b) 
any internal species occurs in at most two elementary reaction steps. Otherwise, the 
network N (and its mechanisms { M}) are "turbulent". 

Paper I [1] gave, with chemical and biochemical examples, some of the 
general features of mechanisms/networks and, as a related problem, ways of generating 
a priori pathways to synthesize a target organic or bio-molecule from a pool of 
common reagents. The latter methodology [ 1 ] is useful in "computer-assisted synthesis 
design". 

Also in paper I [1], all a priori mechanisms are classified, starting with just 
the numbers p or or. This leads to a number of possible types of overall reactions 
(=,) ,  (OVR), depending on the network classes. 

In subsequent papers (IIa, IIb) [2], we dealt with the more restricted question: 
how to find all the a priori mechanisms for a given type of OVR. Paper IIa [2] 
obtained all the laminar M a n d  N for OVR types A + B :=~ C and A =, B; paper IIb 
[2] obtained the OVR types A + B =, C + D, giving many chemical examples. 

In another paper [3] (which is not prerequisite to the present one), further 
details of one method to generate the a priori laminar mechanisms were presented. 
All laminar {M} with all the OVR types they lead to were obtained for p = 2, 
including the additional OVR type 2A + B ~ 2C + D and this OVR type also with 
p = 3 (cf. ref. [4]), again giving chemical examples. 

The present paper deals with turbulent and general networks of any 
type: how to generate them and how to classify them. Autocatalytic steps [5], i.e. 
where some external products may act as catalysts, are one source of turbulent 
network aspects. Such steps are thought to be crucial as a cause of dynamic 
instability of steady states [6,7], in biological oscillating states [7,8], as well as in 
models of  self-replicating systems. They are of course also important in chemical 
engineering. 

The set of papers mentioned above have dealt with reacting mixtures mostly 
in batch (in this sense "closed") systems. For many applications, it was necessary 
to treat "open" or flow reactor-type systems, e.g. in the study of  possible steady 
states. This has recently been done admirably by Poland [9]. Other works include 
the use of a "kinetics complexity index" (based, however, on the rate law expressions 
and for "linear mechanisms" only) by Bonchev et al. [10], the earlier algebraic 
approach of  Sellers [11,12], the stability methods of Clarke [13], and the work of  
Barone et al. [14], and others (see refs. [10,11] and references cited therein). 
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In a different type of chemical application of the network theory, the complicated 
case of finding the a priori possible mechanisms for the pyrolysis of ethane [15] is 
treated in more detail in another paper [16]. 

More of the mechanisms or pathways invoked in chemistry or biochemistry 
are laminar. Turbulent ones arise when some intermediates are fairly long-lived, so 
that they have an opportunity to participate in a number of different reaction steps. 
As mentioned, "turbulence" arises also when an external species acts as a catalyst 
or is involved in self-regulation of the system. Another cause is the presence of  
homolytic steps such as (A ~ 2B), still another is the occurrence of several OVRs 
with some product(s) in common. The latter is easily dealt with, such OVRs decoupled 
(cf. below) and this type of fairly trivial "turbulence" eliminated. In fact, such networks 
were therefore considered "laminar" but not "strictly laminar" (cf. paper I [1]). 

Due to their greater complexity, most unsolved mechanisms are probably 
turbulent. Some reactions having turbulent features are: 

(1) decomposition of acetone; 

(2) decomposition of dimethyl ether; 

(3) polymerization of diborane; 

(4) decomposition of acetaldehyde; 

(5) hydrolysis of esters, etc. 

In the latter case, the reaction is catalyzed by the hydrogen ions. If one of  
the products is an acid, acid catalysis can be enhanced by the product. If we take 
this effect into account, the network is a turbulent one. If we disregard the dissociation 
of the acid, the reaction can be treated as if it were laminar. However, the turbulent 
mechanism is more appropriate for the interpretation of kinetic features under a 
wider range of conditions. Turbulent reactions are also found in enzyme reactions 
when an enzyme has more than one reaction site. Turbulence also occurs frequently 
in the organic and inorganic oxidation and reduction reactions. 

In what follows, the different types of turbulent networks will be treated with 
regard to the types of chemical species vertices that can arise. The topological 
relations derived will lead to their systematic generation for increasing numbers of 
reaction steps. Special emphasis will be given to autocatalytic mechanisms, as well 
as not necessarily kinetic but, for example, metabolic or thermodynamic cycles or 
pathways. The methods described in this paper will also apply to general networks, 
without making a distinction between laminar and turbulent. Various examples, 
important in relation to dynamic instabilities in networks, chemical oscillations and 
biochemical models, will be given. The networks derived are involved also in 
chemical industrial problems such as fermentation reactions with micro-organisms 
on organic matter, oxidation of rubber, formation of red lead 0~b304) from powdered 
lead by oxidation [5], and many other examples, not to mention the ones in physical 
organic chemistry. 
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. L a m i n a r  versus  turbulent  m e c h a n i s m s  and  the species vertex as a source  or  

sink 

In a strictly laminar network [1], N l ' ,  one species-mole line ( - - )  occurs for 
each species. The species-mole (sm) lines come together only at reaction (wiggle) 
lines ( . . . .  ). All sm lines that are thereby connected constitute a lineblock which is 
compressed into a dot-point in the skeleton S of  that network N .  (For further 
definitions and the theory up to here, the reader is referred to paper I [1].) 

In a strictly laminar network, the number of  sm lines n equals the number of  
distinct chemical species O-, 

n=o- ,  ( l l )  

where [ 1 ] 

O-= O-int + O'ext. 

Further, at each strictly laminar lineblock i, similarly 

n i = O )  i , 

where ~,. - number of  species at i, and of  course 

(2) 

(3t) 

n i = n (4) 
i 

and 

=o- (5) 
i 

for the N~. Recall that in the S of N1, the dot-points {i} get "weights" {~i} 
depending on the N c c  S. 

In turbulent networks N t ,  there may be several moles ns occurring for a given 
species s. If  so, the sm lines are joined to a species vertex [1] s, e.g. 

S 

Or 

(6) 

Note that starting from a laminar network, this may also have the effect of  
merging two or more otherwise separate lineblocks into one. This would change the 
skeleton; for example, 
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S : ~ of No: 

but if B = G = C, S becomes 

S "  ~ of Nt  : 

A 

B [3 

A 

However, it would be awkward to start with the {Nf} already obtained and 
continue to merge sm lines into s-vertices to obtain some {Nt}. Rather, below we 
still take one S at a time and derive methods to obtain all the turbulent as well as 
laminar N s  of that S without altering the .5. 

For turbulent networks, eq. (1) no longer holds. Instead, we have 

n > or, (It) 

or generally, for any N (t o r / ) ,  

I n > o r  ], (1') 

where the equality holds for the laminar cases. 
Similarly, if a lineblock i displays species vertices 

ni  > (/)i, 

or for a general i (t'or t), 

(3t) 

~ .  (3') 

For laminar networks, their skeletal dot-points {i} were labeled [1-3] by 
weights {~'i}- 

For general networks (t or f), we see that skeletal dot-points {i} will have 
to have "double weights" (~i, ni) satisfying eqs. (3') and (1'). 

The relations between p, o', % O~nt, O'ex t were given in [1] for general networks 
( /or  t). Rules for obtaining the possible weights ~ to an S to obtain the {N~} out 
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of that S were derived and used in [ 1-3].  In the following, the double weights (coi, nl) 
will be derived for the S to obtain the additional N t  possibilities out of that S. 

The skeletons possible with elementary reaction step numbers p = 1, 2, 3 and 
4 were displayed in tables 1 and 2 of [1]. For a given S, of the possible (COl, ni) double 
weight labelings of the dot-points, those double weights which show o9 i = ni correspond, 
of course, to the usual [2,3] single weight (co/) laminar subset of {N}s .  The others 
give the turbelent {Nt}s. 

In laminar networks, it was shown [1-4] that one does not need to show the 
reaction direction arrows. The direction of material flow is implicit in the network 
itself for each sm line and reaction step line, up to a reversal of all arrows. 

In strictly laminar networks, the only "sources" or "sinks" of molecules are 
the free tips of external species mole-lines. 

(source) 

(sink) 

(7) 

In turbulent networks, all species vertices {s} are sources or sinks or both. 
They are sorted out as follows. 

3. Types of species vertices 

Consider a species vertex s of a species s ~ {A, B . . . .  ; X, Y . . . .  } with n, 
species-mole lines. The n, is also 

P 

n+ = E (lv~Ll+lv~,l), (8) 
J> l  

i.e. the absolute value sums of stoichiometric coefficients of s in the left (L) and 
right (R)-hand sides of  each elementary step J. Also 

O" 

n, = n (9) 
s>l 

for the full network. 
If n, is odd, s must be a source or a sink; hence, s is an external species. Since 

each line has at 
S 

~ ~  (lO) 
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its other end a ( ...... ) line, when consistency arrows [1,3] are placed on the N ,  each 
sm line acquires an arrow to or from s. Thus, 

n~ = E, + E,. (11) 

With eq. (10), the possibilities are 

(sink) (sink) (source) (source) 

(12) 

Thus, for n, = odd: 

{ n, > h-s (sink), 

fi~ > ~ (source) 

with n, even: 

(sink) (.'. s = ext), 

(source) (.'. s = ext), 

(source and sink cancelled) 
(.'. s = i n t e m a l  species) 

(13a) 

(13b) 

which proves the following theorem. 

THEOREM 1 

A species s with s-vertex s in N with degree ns odd is an external species. 
If  ns is even, s can be an internal or external species. 

From eqs. (11)- (13) ,  we also have: 

THEOREM 2 

Without regard to the rest of  N ,  the possible types of  an s of  degree n, are 
given by the partitions of  n, into two integers (E,, ns). 

For example,  in eq. (12) with ns = 3, 

3 = 3 + 0 ,  2 + 1 ,  1 + 2 ,  0 + 3 .  

Which partition (ns, ~,) the s-vertex has, depends on the flows implied by 
the N consistent with the desired OVR [1-3] .  
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With n, even, the case of  ns = 2 deserves special ment ion due to its relation 
to laminar  N s ,  

n , = 2 = 2 + 0 ,  1 + 1 ,  0 + 2 .  

The n, = 2 and (ns, n~) = (1, 1) gives the simplest type of  intemal  species: 

S 

(14) 

Since the same mole is going in and out of s, in (14) the s can be removed,  the line 
"unkinks",  and this section of  N becomes laminar. 

A laminar network is one in which all internal species are of  the type ns = 2; 
(ns, ns) = (1, 1). Equation (14) and 

(14') 

are topologically equivalent as stated in [1]. The use of  (14') instead of (14) leads 
to eqs. ( l f )  and (31). 

Further, some extemal species vertices (~s ~ hs) can also be removed, allowing 
some N s  to be treated as "laminar" although they are not "strictly laminar" (recall 
the definit ions of  these two in terms of the {v i} of the steps and of  the OVR in [1]). 
These are the s with the ns partitions (ns, ns) = (ns, 0) or (0, n,). For example,  

or, for example,  

S 

A 

A" 

(15) 
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Such decoupling of  s joints of  lineblocks with the resulting change in the 
skeleton (e.g. <> ---> -<~) will not cause any difficulty in the stoichiometric aspects 
of the N ,  nor in the rate laws aspects, as long as the N is used in connection with 
a definite OVR (the same assignment of "consistency arrows") [1,3]. 

If all the species vertices of ns > 1 are of the full-external, i.e. (ns, 0) or (0, n,) 
type, that "quasi-turbulent" N (i.e. "laminar" but not "strictly laminar") may split 
into several disconnected laminar Ns ,  several independent OVRs. For example, 

forl A+B--> D + G  

A + C  ---> G (16) 

OVR: 2 A + B + C  :=> D + 2 G  

becomes 

B D "~ 

A' ~ ~  j~G' 

C 

OVRI: A + B ~ D + G ,  
(17) 

OVR2: A + C =:> G 

with the resulting disconnection in the S: 

(Note that eq. (18) does not occur for the cyclic assignment of reaction arrows, 
which corresponds, however, to a different OVR: B =:~ D + C and also violates our 
rule regarding the type of the A and G vertices.) 

In summary, the following types of "turbulent networks" are noted vis-a-vis 
the types of species vertices they contain (see section 4). 

4. Types of networks with respect to their turbulent nature 

Assume networks are initially drawn in full generality, i.e. displaying a species 
vertex s for each of the o- species {s}. Then the {N} types are: 
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(I) Each extemal species has a species vertex of ns = 1 with the partition 
(h-s, h-s) = (1, 0) or (0, 1). 

Each internal species has a species vertex of ns = 2 with the partition (1, 1). 
(Then they may be "unkinked"; eqs. ( 1 4 ) ( 1 4 ' ) . ) T h e s e  {N}I are "str ic t ly  

laminar"  [ 1 ]. 

(II) Each external s-vertex has n, > 1, but with the partition (h-s, h-s) = (ns, 0) 
or (0, n~). 

Each internal s-vertex has n, = 2 with (1, 1) (so they may be "unkinked"). 
These { ~ } u are "quasi-turbulent", using the terminology of [ 1 ]: "laminar" but not 
"strictly laminar". 

The external s-vertices of {N}xi can be split; then {N}II---){Nt}.  This 
process splits some dot-points of the initial 5, then (IIa) either a single S" (one 
connected piece) still results, but with ring [1] number r '  < r, or (lib) S breaks up 
into several disconnected smaller skeletons such that S = S~ @ S~. + . . . .  For (IIb), 
the initial OVR = ]~i(OVR)i. 

(III) All the external s-vertices are "laminar" as in cases (I) or (II) above, 
i.e. Sext: (n~, 0) or (0, ns). 

• • 1 i n t  1 i n t  In general, any internal s has of course to have the partltmn (~-n s , -~ n s ), 
but here in type III, s o m e  n]nt > 2. Then the only turbulence of {N}IH is in the 
internal species. Examples of such turbulent internal species can be seen in fig. 1. 

We may call the {N}ni" internal ly  turbulent" networks. 

(IV) Any network containing one or more species vertices such that n, > 2 
with an unequal partition (h-s # h-s) and h-s, h-s ~: 0. Such a vertex is an extemal 
species one; however, one that also partly acts as intemal. If furthermore h-s > h-s 
(i.e. more s is generated than consumed at each pass through N ) ,  then the network 
is "au toca ta ly t i c" ,  {N}wa.  For example, 

A 

(19) 

If h-s <h-s for all {s} with (h-s ~: h-s), we shall put that N i n  type {N}Wb. 
Each s of the autocatalytic type can be classified further, depending on the 

topology of  the full lineblock it occurs in (cf. the section on network piece 
generation below). Further, in type {N}iv the informal species may be laminar or 
turbulent. 

Table 1 lists the possible types of species vertices and the resulting {N} 
according to types of {ns} values and partitions {(h-s, h-s)}. 
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k (o~), n~)) N-lineblock ,S-dot point 

1 O, 1) i(1) 

(1,2) 

(2, 2) 

2 (1, 2) i(2) 

(1, 3) 

/ 

/ / 

(1, 4) 

Fig. 1 (continues) 
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k (%k), hi(k)) N-lineblock S-dot point 

2 (cont'd) (2, 3) 

(2,4) ~ 0 

(3, 4) 

3 (1, 3) i(3) 

(1, 4) 

Fig. 1 (continues) 



O. Sinano:,lu, Networks for chemical mechanisms 331 

k (a~¢k~, n~ck )) N-lineblock S-dot point 

3 (cont'd) (1, 5) 

(1,6) 

(2, 4) 

(2, 5) 

/ 

Fig. 1 (continues) 
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k (¢oi(~), hi(k) ) N-lineblock S-dot point 

3 (cont'd) 

(2, 6) 

(3, 5) 

(3, 6) 

Fig. 1 (continues) 



O. Sinano:,lu, Networks for chemical mechanisms 333 

k (~'(k), n~(k)) N-lineblock S-dot point 

3 (cont'd) 

(3, 6) 

(4, 6) 

/ 

Fig. 1. Lineblock types possible for each double weighted dot-point i(k); (eoi(k), hi(k) ). 

Table 1 

The possible types of species vertices and the resulting {N} network types. 

Species vertex types in N Network type 

each external species: 
each internal species: 

each external species: 
each internal species: 

each external species: 

n, = 1; ( ~ ,  ~ )  = (1, O) or (0, 1) 
n s=2;  (~ ,  ~ ) = ( 1 , 1 )  

ns> l ;  (~s, ~ )  =(ns, O) or (0, ns) 
n ,=2;  ( ~ ,  ~,) =(1,  1) 

n, _> I; ( ~ ,  ~,) = (n,, o) or (o, n,) 
some internal species: n ,>2 ;  (K,, ~,) = (_fins , 1  _ill ns ) 

one or more species vertices: 

n,>2,'~ @n,n,,n :~0 ~ >~ 

{Nh;  "strictly laminar" 

IN}If; "laminar" 

{NIlH; "internally turbulent" 

{~}IVA; autocatalytic 

{N}IVb; self-inhibitory 
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5. Generation of all a priori turbulent networks/mechanisms 

To generate all networks, turbulent and/or laminar, one starts with a look at 
the p(cr) relations [1] to select the reasonable range of possible/9 and/or ty values. 
Then take a p. Obtain all the skeletons {S}n for this p. The p = 1, 2, 3, 4 skeletons 
are already tabulated in [1]. From here on, the procedure differs depending on 
whether one is treating just the laminar cases (already given in [1-4])  or the 
turbulent and laminar cases both. 

For laminar only, eqs. (11), (3/') apply. Thus, each dot-point i of S acquires 
a weight co, (=ni). The possible weights {co/} for all the dot-points of S are found. 
For just laminar, the possible [1,2] co/E {k -  1, k, k', k + 1 }, where k is the star- 
value ("degree") of that dot-point i in the particular S. 

Possible weight combinations are assigned to the S, producing a number of 
weighted skeletons {Sco}. For each S~o, each dot-point i of weight co/is "opened up" 
into a lineblock which gives that piece of the network. The pieces are joined, 
preserving the S. 

Thus, 

laminar only: p --) S ---) &o ---) Nc  (20/) 

For general {N},  turbulent and laminar allowed, we have eqs. (1') and (3'). 
When turbulent, a lineblock has more species-mole (sm) lines ni than the number 
of species co,.. 

Thus, now the dot-points of S have double weights (coi, ni) which, when 
"opened up", give the turbulent network pieces. 

6. Doubly weighted skeletons for general networks (turbulent and laminar both) 

We shall develop the method for general networks ( l and  t) in a way that 
covers all the types of table 1. The laminar method [2,3] is then recovered as a 
special case. 

For the general method, the networks are considered drawn with a species 
vertex for each species, even for the internal laminar ones. That is, ns = 2; (ns, ns) 
= 1, 1 vertices are drawn before any laminar "unkinking" (eqs. (14), (14')). Then: 

(1) Each dot-point i of star value k of a skeleton has a set of possible double 
weights {(coi(k), ni(k))}. 

(2) Each double-weight assignment gives rise to one or several types of 
general lineblock (a turbulent or laminar network piece). 

(3) For turbulent lineblocks as well as for the "kinked laminar" ones, coi< n i. 
After the kinked laminar species vertices are identified (by their ns = 2; (~s, hs) = (1, 1) 
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nature) and are unkinked (eq. (14) ---> (14')), if the network piece does not have any 
turbulence left, one recovers the usual laminar case [2,3] with o9i = ni. 

(4) The possible double weights of  i(k) are given by theorems 3(a) and 3(b). 

THEOREM 3(a) 

The double weights { (oJi(k), ni(k)) } of a skeletal dot-point i of  star value ("degree") 
k, denoted i(k) are sets of  integers satisfying 

and 

1 < ¢oi(k) < (k + 1), (21a) 

k < ni(k) < 2k (21b) 

¢0i(k) < hi(k) for k > 1, (21c) 

(.Oi(k) = ni(k) for k = 1. (2 lc ' )  

P r o o f  

Since reaction steps were uni- or bi- only, either one or two sm lines come 
out of  each of  the k-wiggle lines. Hence, eq. (21b). A minimum of  k sm lines are 
needed to obtain a connected lineblock. This min ni(k) is for 09i(k)= 1, which is the 
min 09. 

i 

k=3 
(22) 

M a x  ni(k) is 2k. The max coick ) for hi(k) = 2k is obtained for the kinked laminar case 
(as noted in [1]): 

,. c~o~,n: (23) 

{[O)i(k)]max = k + 1; [ni(k)]max = 2k}. Any merging of  species vertices starting from 
the kinked laminar decrease ¢oi and/or ni. 

Equation (21c')  holds only for k = 1 for the lineblocks 

L 

J 
ni ( l )  = 1 

o91(1) = 1 

and 

nio) = 2 
toiO) = 2 
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otherwise all other l ineblocks including k = 1; (co, n) = (1, 2) and k > 1 turbulent 
ones and kinked laminar ones obey eq. (21c). 

Comment  1. Equations (21) reduce to the inequalities of  the usual ("unkinked") 
laminar ones [1 -3]  after the unkinking and COl(k) = ni(k). (k - 1 < ni(k) < k + 1). 

Comment  2. Theorem 3(a) is necessary but not sufficient for a set (09, n) to 
be a double weight, i.e. to correspond to a connected lineblock. There is a further 
restrictive relation between o9 and n. Hence, we need: 

THEOREM 3(b) 

A pair of  integers satisfying eqs. (21) is a double weight if also 

ni(k) - COl(k) - k + 1 _> 0. (24) 

Proo f  

Lineblock i is a connected graph of  (ogi(k~ + k) vertices and n i ( k )  lines. They 
are general, may be planar or non-planar. Therefore, they satisfy a topological  
relation like the one for skeletons (),= p -  r + 1) proved in that context  in [1]. 
The corresponding ring number,  here R = ni(k) - coi(~) - k + 1 (eq. (24)), is non- 
negative. [] 

Comment  3. For an arbitrary 3D graph R E {0, 1, 2 . . . . .  ni(k)}; however,  R 
may not reach the higher values if the graph is a l ineblock due to eqs. (21) l imiting 
that type of  graph. The k vertices can be only of degree 1 (kl of  them) or 2 (k2 of 
them). Thus, k = kl + kz; ni(k)  = kl + 2k2. Hence, kl = 2k - n i ( k )  and k2 = n i ( k )  - k. Then 

R = k 2 -  O~i(k) + 1, 

k>_k2>O 

for a lineblock. 

(25a) 

(25b) 

Comment  4. We see that eqs. (21c) and (21c')  also follow from (24). We 
could have omitted them, but wrote them to make the finding of  double weights 
more  convenient.  

PRACTICAL COROLLARY TO THEOREMS 3(a) AND 3(b) 

Skeletal double weights corresponding to lineblocks are the integer solutions 
of  eqs. (2 la), (2 lb) and (24). 

Double weights for skeletal dot-points  {i(k)} are shown in table 2 for 
k ~ { 1 , 2 , 3 ] .  

The lineblocks (turbulent and "kinked" representation of laminar) these double 
weights give rise to are shown in fig. 1. 



Table 2 

Double weights for each skeletal dot-point i(k); k ~ { 1, 2, 3 }. 

337 

Skeletal dot-point: i(1) 

k = l  

Double weights (¢.o/0), hi(l) ) 

i 

AIIL 

k = 2  

iiw 

q~ 

• . .  continues 
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Table 2 (continued) 

k=3 i(3) 

2 3 

4 

c 

7. Topological classification of general lineblocks 

A topological invariant 1 for a connected lineblock is its number of  rings R 
given by eq. (25a). Since given the k value of i(k), the double weight (o~iCk), ni(k)) 
determines the R value, the lineblocks of an i(k) arising out of the same double 
weight are in the same R class; they have the same number of rings. 

This is sufficient, but not necessary. The necessary and sufficient condition 
for arbitrary lineblocks to be in the same R class is that they have the same value 
of  ((ni(k)- toi(k)- k) (theorem 3). 

The following sets of numbers specify the same set of lineblocks in fig. 1: 

(k, CO i, ni) 
o r  

(k 1 , k 2 , oJ i )  
o r  

(k,  R, oJi) 

l In the sense of  invariance under elementary subdivisions of  the lines of a graph. 

(26) 
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However,  there are usually still several l ineblocks in each such set (cf. e.g. fig. 1; 
k = 3; (o9i, ni) = (2, 5)). Each lineblock within such a set is further specified down 
to a unique one, by a sequential list of  the vertex degrees; for example, the ones 
in fig. 1 in the l ineblocks  set {(k, 09, n ) =  (3, 3, 6)} are g iven  by the lists 
(2, 3, 2, 2", 2, ]-), (T, 2, 4", 2, 2, "i") (2, 2, 2, 2, 2, 2), and (2, 2", 2, 3, 2, ]-), where  
the barred ones are the species vertex sm line degree (or "turbulence index" of  s) [1] 
ns values. The non-barred ones are the " u n i - b i  degree" of  each reaction vertex. 
Each sequence is composed of  two R-consistent partitions of  the integer hi(k). 

We shall not go into the combinatorial  aspects further here, but assume that 
the ns values of  each species s can be read off  on the l ineblocks drawn for given 
(k, o9i(k), ni(k)) o r  (k, R, o9) as in fig. 1. 

. Combining the lineblocks according to a given skeleton S to obtain its full 
networks 

The lineblocks in fig. 1 (for k = 1, 2, 3) and similarly higher k ones can now 
be combined to obtain the general networks of p steps and a skeleton S of  p, noting 
that [ 1] 

~_~ k i = 2p (27) 

for ?' lineblocks. The wiggle lines of  the same or different l ineblocks are spliced 
according to the Sp. 

(A) THE p = 1, ALL ONE-STEP NETWORK TYPES 

For p =  1, the {S} are [1] 

• • and ~ /  (28) 

(a) (b) 

The k = 1 lineblocks, m = 3 of  them, give m(m + 1)/2, i.e. six networks for 
Sla. These are as the elementary reaction types [3], including the turbulent versions 
(fig. 2(a)). Each 9(  implies also the reverse reaction. The only turbulent l ineblocks 
from Sla are of  the homolytic  type. 

Since ~'= 1 and k = 2 in the Slb, the other p = 1 networks are given from the 
splicing of  the k = 2 lineblocks of  fig. 1. Thus,  one has the ones in fig. 2(b). The 
first is the simplest case of  autocatalysis, the second of  catalysis. Other l ineblocks 
of  k = 2 lead to either trivial (e.g. A ---> A), or inconsistent [ 1,3] or forbidden networks 
such as 
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(inconsistent arrows) (A+B - >  A torbidden) 

(29) 

Trivial  or  forbidden ones arise when there are none or only  one external  
species  ver tex in the network;  hence,  they are easily recognized.  

(B) THE p = 2 GENERAL NETWORKS 

The p = 2 skeletons are of  ring numbers  [1] r = 0, 1 and 2. All laminar  
ne tworks  and mechan i sms  poss ib le  with p = 2 were derived earlier [2,3].  From the 
general  l ineblocks  in fig. 1, we can obtain all the general ones,  including turbulent ,  
for  the r = 0 and 1 skeletons 

L bl 

i b2 
J 

(30) 

For  the one  o f  r = 2, (~-j--',C~), we would  also need the k = 4 l ineblocks.  

(i) Networks of  S2a, .~ 

Six pairs o f  k = 1 l ineblocks  are combined,  one for each end o f  eq. (30a), with 
one o f  the k = 2 cases  o f  fig. 2. 

The  k = 2, double  weights  (coi, hi) ~ {(1, 2), (2, 3), (3, 4)}, together  with any 
o f  the k = 1 ones  give the laminar  ne tworks  already listed in refs. [2, 3]. 

The k = 2, {(1, 4), (2, 4)2} yield either essentially a laminar mechan ism [2] 
(for  the species  ver t ices  intemal ,  i.e. ~ 2A---) or ---) A + B --)), or  ones that split 
into two p =  1 laminar  react ions at the k = 2 turbulent species  ver tex (for {s} 
external,  i.e. (---) 2A and ---)2B) or  (---) A + B and ---)A + B). The remaining ones are 
k = 2; (o3i, ni) ~ {(1, 3), (2, 4)1}. These  

or J 
(31) 

are inserted into any one o f  the $1= ne tworks  o f  fig. 2. For example,  
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(a) 
p = 1, Sl,  - e 

9(  Rx (and reverse) 

.~ • A - ~ B  

• ~ A ---> 2B 

• ~ A--> B + C  

2A ---> 2B 

2B ---~ C + D 

A + B - - > C + D  

(b) 
p = 1, Slb = 

9( Rx (and reverse) Remark 

A + B - - >  2A 

A+Z---~ B + Z  

direct autocatalytic 

direct catalysis 

Fig. 2. One-step general network types. 
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B ----> 2 A  

A - - > C  
o r  

B ---> 2A 

A+C---> D 

(32) 

If the A-vertex in these were internal, i.e. (E s, h- s) = (3, 0) or (0, 3), eqs. (32) too 
would split into two p = 1 reactions each. 

(ii) Networks of S2bl, < ~ >  

For S = <~_~>, the m = 7 lineblocks of  k = 2 would splice into more than 
m(m + 1)/2 = 49 networks; however, most of  these are already obtained or are 
trivial (cf. below). Very few new ones arise. 

An asymmetric lineblock like 

can combine two ways with another asymmetric lineblock like 

However, many of  these N would split into separate OVRs or be essentially the 
laminar ones already given [2,3]. For example 

A~~~ B (31') 

is simply 2(A --> B) or the cycle A ~ B  (A ---> B ---> A). 
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The k = 2, {(1, 2), (2, 3), (2, 4) 2, (3, 4)} give the laminars [2,3], the k = 2 
(1, 4) homolytic variant of  (2, 4)2. 

The only new {N} are again combinations of  (1, 3) or (2, 4)1 with any of 
the seven k = 2 lineblocks. So again there are very few new network types (fig. 3) 
with p = 2, $261, after the inconsistent or forbidden ones too are eliminated. The new 
ones are all of the types 

U or 

.< 

f ~ i  (b) 

oF 
(33) 

and with the single external lines removed one at a time to obtain additional N s  
which correspond to different overall reactions, OVR. For example, from eq. (33a) 
one also obtains 

(33a') 

and 

(33a") 

The last external line cannot be removed since there must be at least two external 
species in a full network. 

Clearly, not all the possibilities in deriving all networks need be listed; the 
maximal external lines N s  like in eqs. (33a)-(33c) suffice. If an OVR type is 
specified, then again just the more stripped variants of the "complete N",  i.e. the 
N with all its reaction vertices saturated as bimolecular, consistent with the OVR 
need be found. 



344 O. Sinano~,lu, Networks for chemical mechanisms 

piece: (~ 
(2,5)1 ~ ~  ~ ~ . . ~  

(2,6)1 

(2,6)2 

(2,6)3 

(3,6)1 

(3,6)2 

Fig. 3. The k = 3, turbulent network pieces. 
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The mechanisms of eqs. (33) are 

A + B ~ C + X )  

X + D ~  2A 

A+B ~ C+D t 
2D ~ 2A 

(M33a) 

(M33b) 

A+B ---> 2C} 

C + D  ---> 2A 
(M33c) 

Others result from the omission of some of the species of ns = 1, (ns, ns) = (1, 0) 
or (0, 1) from eqs. (M33a) - (M33c) .  

(iii) Networks of  $262 . . . . . . .  ~ )  

These can be obtaines from the k = 3 lineblocks of fig. 1 by first splicing two 
wiggle lines at a time to each other to form the skeletal piece 

? 
(34) 

then joining the remaining one to a k = 1 one from fig. 1. 
Those k = 3 lineblocks containing at most ns = 2 vertices (s) would again give 

the laminar N [2, 3]. 

The ( ~  type network pieces containing the triangular cycle ~ with 
only one s-vertex on it or attached to it, i.e. (09/, ni) ~ {(1, 4), (1, 5), (1, 6), (2, 4), 
(2, 5)2, (2, 5)3, (2, 6)4} are trivial or inconsistent or forbidden. 

The remaining not fully laminar ones are shown in fig. 3. 
We see in fig. 3 that the only network pieces that do not split up, or reduce 

to laminar, or become invalid or trivial, are the ones containing the autocatalytic 
species vertex s. 
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Table 3 

The p = 2, S = ~- -  turbulent mechanisms" (cf. text). 

(2, 5)x: 

A - - )  X 

X + B  ---) 2B 

OVR : A ~ B 

(2, 6)1: 
t A - ~  2B , _._._c 2c 
I OVR : A =) B + C  

(2, 6)2: f 0  C + B  --~ 2B 2 B - ~  A 

V R : C + B  ~ A 

(2, 6)3: 
t A ~ B + C  B+__c -, 2B 
LOVR : A ~ 2B 

{ov  A B +c (3,6)1: B + D  --) 2D ; 

A ~ C + D  

A---) 2B 

B + C  ---) C + D  

O V R : A  =~ B + D  

b A -# B + C  

(3, 6)2" D + B ~ 2B ; 

V R : A + D  ~ 2 B + C  

O A ~ 2B 
B + C  ---) B + D  

V R : A + C  ~ 2 B + D  

• Additional ones are obtained by adding another external species, say G to 
A, in all of the above (corresponding to a k = 1; (2, 2) piece instead of 
k = 1; (1, 1) piece). 

Splicing the ones of  fig. 3 with the k = 1 lineblocks of  fig. 1, we obtain the 

new p = 2, S = .  ~ networks. The maximal "complete networks" are with k = 1, 

(2, 2); the minimal with k = 1, (1, 1). The nine such mechanisms that result from 
fig. 3 are shown in table 3. 

The mechanisms in table 3 lead to a number of  OVR reaction types, i.e. 
A ~ B, A ~ B  + C, A ~ 2B, A + D ~ C + 2B, and if  some steps are reversed, also 
A + C ~ 3B and A + B ~ 2C (and reverse OVRs of  all of  these). We can also add 
another spec i e s ,  say G to A, to obtain additional ones in table 3 (k = 1, (2, 2)). 
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Combining the p = 2 results of the previous sections with the laminar ones 
obtained earlier [2, 3], we have the general p = 2 mechanisms including homolyt ic ,  
autocatalytic and the catalytic ones. 

(iv) The S: c>~ 

Here, we skip the p = r, S = ~ turbulent ones, which can be worked out in 
a similar manner  if desired. The systematic way to be sure to obtain all of  the 
{N} of  C>.o would be by splicing the k = 4 ends of  each ( - - /%/ )  l ineblock in 
( 4 ) = 6 ways. A quicker way would seem to be by merging the l ineblock of  sub- 
skeletons, e.g. (~)  ® ~ )  = [ cx:3 }. Since there are only two lineblock types for 
(~ in fig. 2, those mergers  are easily worked out. They include (i): the turbulent 
ones from two catalyses: 

(ii): from a catalysis and an autocatalysis: 

(35a) 

(35b) 

(36a) 

(36b) 
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(36c) 

\ 

(iii): from two autocatalyses: 

(36d) 

(37a) 

(37b) 

(37c) 

In such mergers, the final N must have at least two external vertices (e.g. of  ns = 1, 
ns = 3 . . . .  etc.) 

The above {N} are easily interpreted; for example, in eq. (36b), the autocatalyst 
of  a step is also reactant for another catalytic step, etc. 

However, the (~.~) ® (17)) merger  does not generate all of  the S =  c.<3 net- 
works. For example, 

~.~. - " D+B---)  G + B  (38) 

. ~ O V R ' A + B  =, C 

results from S = 0 -_ by merging the end lineblock into the k = 3 one. 
By such methods, i.e. splicings of  k-lines or merging of sub-skeleton lineblocks, 

one can obtain the Ns .  w e  shall not belabor these points further here since, if  one 
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has a desired OVR type and/or number of catalytic, etc. rings r, the generation of 
{N} is much simplified to a lot fewer possibilities. The above systematic ways, 
however, could be used to generate an atlas of all the general networks/mechanisms 
of p ~ { 1, 2, 3, 4 . . . .  } (r = 0, 1, 2 . . . . .  p) and of the possible OVR types. Such an 
atlas would serve as a handy source of the a priori possibilities for mechanistic 
studies. 

. Generating topologically equivalent n e t w o r k s  o f  increasing number of reaction 
steps,  p 

A chemically important characterization of a network/mechanism is by the 
types of external and of internal species vertices (section 3; ns; (ns, ns)) it has and 
by the number of catalytic and/or autocatalytic cycles it contains. Topologically, the 
number of such cycles is related to the number of rings r in the skeleton and the 
number of homolytic or autocatalytic rings R in the lineblocks. 

As we have noted, r is a topological invariant of skeletons under elementary 
subdivisions of ( . . . .  ) reaction step (rx) lines [1]. One may also carry out proper 
subdivisions (cf. below) of species-mole (sm) lines of the network N .  A theorem is 
stated and proved elsewhere [11] that the composite ring number (r + R) is a topological 
invariant of the network under either or both typed of line (rx and sm) subdivisions. 

Based on this result, and starting from a basic, smallest p, network with the 
desired features (types of species vertices, number of catalytic, autocatalytic 
cycles . . . .  ), successively larger networks of p + 1, p + 2 . . . .  are easily generated, 
retaining the desired features. This also allows the accommodation of richer overall 
reaction types (OVR) when the smallest p network cannot retain the desired features 
(cf. below). 

(A) SUCCESSIVELY LARGER CATALYTIC NETWORKS 

Take the simplest network of a single catalytic cycle: 

A X B 

7"~P=l : ~  ¢S: 

(i) 

7 2 .  A+X->X+B 
• OVR: A = ~  B 

Successive rx line subdivisions preserve  r = 1 

(39) 

A X B 
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A X B 

g Z 

(40b) 

and so on for p = 4, 5 . . . . .  
On the N ,  rx line elementary subdivision give: 

P ~ (41a) 
p+l  

corresponding to subdivisions on the S: 

¢_~ : ~ ,- ~ (41b) 
p p+l 

We see in eqs. (40) that two-step, three-step . . . .  single chain reactions are 
topologically, as well as in their overall chemical action, equivalent to a single 
direct catalyst, eq. (39M). The action of  chain steps mimicking a catalyst was noted 
in [1] and led to the notion of  "generalized catalyst". 

(ii) sm line subdivision on the N 

Proper sm divisions pertinent to N do: 

"/ 

If on the composite ( sm-rx)  ring of an N ,  sm subdivisions are equivalent 
to rx subdivisions; the r number is still preserved. 
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If on the external sm line, e.g. 

Y X B 

A --:,. Y ~ ' ~  
y + X - > X + B  " 
OVR: A~=. B 

(43) 

again r is preserved, but a tree is attached to the skeleton. 
Thus, rx and/or sm line subdivisions generate a whole class of  { p ~ p + 1 },,, 

networks with a single "generalized catalyst" (X ~ one multi-step chain) [1] and 
with the same OVR (here, A =:~ B). 

(iii) One generalized catalyst, larger OVRs, the "complete OVR" 

With rx steps bi- or uni-molecular the prototype single catalysis network, 
eq. (39) cannot accommodate an OVR larger than A =,  B. The successive { p ~ p + 1 } 
generation allows one to obtain larger OVRs. Each time an N as in eqs. (40) is 
obtained, new reaction line vertices can be saturated with additional external sm 
lines (n, = 1). To obtain all the possible OVR types, add all the n, = 1 external sm 
lines to wherever there is room, obtaining in each case the "complete network" 
(thus defined). For example, the complete N of  eq. (40a) is 

A X B 

D 

(40a') 

The counterclockwise flow gives the "complete OVR" for this p = 1, r = 1, single 
catalytic N :  

complete OVR: A + C =,  D + B (40a") 
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This is the largest OVR possible. Eliminating some external lines consistent with 
the flow gives, in the general case, the smallest OVRs possible. 

Similarly, eq. (40b) would give the 

complete OVR: A + C + F =:~ G + D + B, (40b) 

but also the set of  OVR types A + C + F ~ G + D . . . .  down to A ~ B. 
Thus, if  one is attempting to generate all the {N} of a given OVR type, say 

A + C ~ D + B, and a single catalytic cycle and of  varying p size, first the 
smallest ,0-2(,  in this example, eq. (40a') is found. Then, from the larger 
p complete networks, external sm lines are eliminated in the possible ways down 
to the desired OVR. 

03) GENERATION OF AUTOCATALYTIC CYCLES OF SUCCESSIVELY LARGER p 

For one autocatalyst, the smallest, prototype network is that of  p = 1, 
A + B ~ 2A (fig. 2). 

Reaction ( ~ )  subdivisions again generate the larger p, the same r = 1 
single "generalized autocatalyst" cycle mechanisms, 

N: 

A A 

X 
p=l -- ~, p=2 

(44a) 

5: 
and the complete network ( c N ) ,  

A 

c N :  s ~o 
C (44b) 

c 9¢/': 

and so on for p = 3, 4 . . . . .  

A + B  --~ X + C  

D + X  --4 2A 

c O V R ' D + B  ~ C + A  
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Now, topologically N-equivalent (but not necessarily S-equivalent) larger p 
networks can also be generated by sin-line subdivisions. These will preserve the 
r + R n u m b e r .  I n e q .  (44), r = l , R = l ,  r + R = 2 .  

All the p = 2 complete networks {c N}  arising from the p = 1 autocatalytic 
prototype (left-hand side of eq. (44a)) are shown in fig. 4 as obtained by sm-line 
subdivisions, eq. (42), as well as by rx-line subdivision, and their mechanisms { M}.  

P N M S Remark 

A 

B ~  B + A ---> 2A ~ prototype single auto- 
catalysis r = 1; R = 1 

OVR:B ~ A ( r+R=2)  

B A 

× 

B+A ~ X+C ~ rx subdivision or an sm 
X+D ---> 2A subdivisionr+R=2 

A 

cOVR:B+D ~ A+C 

A 

x 

B 

B +A ---> Y +A \ ; sm subdivision 
Y+C --> D+A ~ r=2, R=O(r+R=2) 

cOVR:B+C ~ D+A 

B+C ---> D+X ( ~  n s=lexternalsmline 
X + A ~ 2A o ~-j. subdivision r + R = 2 

A 
cOVR:B+C ~ D+A 

Fig. 4. Topologically (r + R) equivalent complete networks {cN} generated by p = 1 ---> p + 1 = 2 
from the prototype autocatalytic reaction A + B --o 2A by sm- and rx-line elementary subdivisions. 

In fig. 5, we show all the one-autocatalysis networks of  p = 3 derived from 
the B + A--~ 2A; OVR: B ~ A  prototype by sm- and/or rx-line subdivisions 
(topological N-invar iant  (r + R) = 2). Unlike in fig. 4, in fig. 5 all the { M} for still 
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P N M S 

A 

x 

B ~ Y 

A + Y  ---> X 

O V R : B  ~ A 

¥ A 

B + Y  ---> X 

X --> 2A 

A --) Y 

O V R : B  ~ A 

X 

A 

X 

B + A  --~ X 

X ---> A + Y  

Y ---> A 

O V R : B  ~ A 

A 

X 

B + A  ~ X 

X ---> Y 

Y ---~ 2A 

O V R : B  ~ A 

A B + Z  ~ Y + A  

Y ~ A 

A ~ Z 

O V R : B  ~ A 

Fig. 5 (continues) 
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p N M S 

A 

o / ~  B + A  --> Y + Z  

Y ---> A 

Z -+ A 

O V R : B  ~ A 
z 

A 

B ~ N ~  A + B  --> A + Z  

Z ---> Y 

Y --> A 

O V R : B  ~ A v 

z 
A~ B ~ Z 

Z + A  ----> A + Y  

e Y ----~ A 
OVR:B ~ A 

Y 

Y 
X / / ~  ~ B ~ X 

X ---> Y 

Y + A  --~ 2A 

OVR : B  A A 

B 

A 

B 

B ~ Y 
Y + X  --4 2A ( ~  

V A ---> X 

O V R : B  ~ A 

Fig. 5. Topologically 9(-equivalent (r + R = 2 invariant) networks {9(} for the OVR: A =~ B generated 
by p = 1 ~ 2 ---> 3 from the prototype A + B ---> 2A by sm- or rx-line elementary subdivisions. 
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the OVR: A ~ B are shown. For simplicity, each network N or its Mis  not completed 
by the addition of  n, = 1 external species lines to the newly obtained unsaturated 
(uni-) reaction vertices. For larger OVRs, those lines can be added to the {N} 
shown to obtain the {cN}.  Also, such added n ,=  1 lines in going from {N}p=1 
to {N}p=2 to {cN}p=2 in  fig. 4 can be subdivided too to obtain a few more p =  3 
networks. 

(c) STILL ANOTHER SIMPLE WAY TO GENERATE ALL THE POSSIBLE (r + R) INVARIANT 

NETWORKS AND THEIR POSSIBLE OVERALL REACTION (OVR) TYPES 

The above subdivision methods can be made still simpler in another systematic 
way, allowing one to also obtain all the possible OVR types as one proceeds. 

Again, take a prototype N ,  e.g. the one-autocatalysis (r + R = 2) case. However, 
now delete the ns = 1 external species line, e.g. 

A 

(45) 

leaving the basic frame {9~} of N 

N z3 N. (45') 

Carry out all possible elementary subdivisions (sm and rx types) until the 
desired numbers {p} of  steps are reached. The convenience is that in general 
there are few resulting "expanded" N s due~to the equivalence of many of  the 
lines. In fact, if first the basic r frame N is taken, 

A 
A 

(46) 

any one (sm or rx) subdivision p = 1 ---> 2 yields from N only one expanded N :  
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A 

7~p-- 1 

p =  I - - > 2  

A 

,~p-2. 
(47) 

ways: 
Next, the multiple A line can be added, due to symmetry, in only two possible 

A A A 

7 2 0  = 2 " 7 2 0  = 

(48) 

Next, all the {N}p--2 are obtained either for a specific OVR (like B ~ A )  or for 
the complete cOVR, the {c N}p= 2. Possible ways of adding ns = 1 external species 
lines to {N} or deletions from (cN} give the smaller {OVR}. 

From eq. (48), 

( 72~2} - ->  { c72}p=2 

( f  A A 

(49) 

or, for example, for the OVR: B ~ A, 

(50a) 



358 O. Sinanof, lu, Networks for chemical mechanisms 

and "B A 

(50b) 

which are the only ones. Note that the direction of  flow around the large ring is 
determined by the type, ns = 3, (ns, ns) = (2, 1) nature of the A vertex. Then it is 
clear at which points the B line can be added for the OVR: B ~,  A. 

For p = 2 ---> 3, the procedure is similar. The Np=2, eq. (47) is expanded by 
a step, 

A 
A 

" 

=2 =3 

(51a) 

the multi-A line added 

(51b) 

or just  the separate multi-l ine of  A is expanded (p  = 0 ---> 1) and added to Np=2 in 
the two possible ways, the first of  which is the same as the third in eq. (51b): 

J 

72po2(~) (A~p: 

and 

(51b')  
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Now the B line is easily added to (51b) and (51b') going counter- 
clockwise from A. The POssible positions are shown with (*) in eqs. (51b, b') (one 

A 
(*)  only at a time for B ~ A), for consistent networks (no A ---> A trivial step, no 
A + B --/-> A forbidden step). For completeness, the B line can be expanded too as 
in fig. 5. 

10. Pathways versus mechanisms 

The above results, such as the topological generation of networks of desired 
features, apply to synthetic pathways [1], metabolic cycles, and thermodynamic 
cycles [12] as well, not only to mechanisms. 

The distinction between pathways or cycles and mechanisms is in the elementary 
reaction steps. In the first two, the steps are conveniently delineated chemical 
reactions with no molecularity in the kinetics sense implied. Thus, such steps are 
themselves like simpler OVRs, each having a mechanism of its own, but not written 
out. The reaction vertices of such "pathway steps" are therefore not restricted to 
being uni- or bi-molecular. The elementary reaction steps of a mechanism, on the 
other hand, of course display molecularity, not only stoichiometry. In the collisional 
sense, therefore, their rx vertices are to the largest probabilities uni- or bi- at each 
end, especially since steps in general are taken to imply forward and backward 
rates. 

With the above methodologies, more species sm lines than two can be added 
at each rx vertex in generating pathways or non-kinetic cycles. Then, upper bounds 
in equations like (21b) are modified. The rest of the theory and methodology 
proceeds rather similarly, as with the kinetic mechanism problems. 

11. Examples of autocatalytic and other turbulent networks 

(1) Models of self-replicating systems: Most biological models involve some 
autocatalytic steps. The "chemotons" of  Tib6r Ganti [8] are autocatalytic 
cycles taken as simple ones still exhibiting self-replication (of the cycle itself as 
well as/or of some templates). It appears plausible that these would also exhibit 
stable oscillations, and might be models of homostatic systems [8], although Ganti 's 
arguments on the latter are not clear, especially vis-a-vis the catalytic cycles themselves, 
which were discussed earlier [1]. 

The "chemotons" are derivable by topological equivalence from the autocatalytic 
prototype (eq. (45)) (cf. also fig. 5), but our procedure here would also give additional 
networks of similar behaviour. 

(2) A malic acid cycle also arises, by [p---> p + 1] 6, from the autocatalytic 
prototype (eq. (45)). 
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Malate 

~~ CoA 
Fuma. 

/  ,io. 
/ 

(52) 

The acetyl-CoA sm lines can, but need not, be joined to an s vertex, since 
that vertex is a fully extemal In, = 2, (ns, Es)= (0, 2)] one and splits. Note the 
relation of  this network (eq. (52)) to the one in eq. (5lb ' ) .  

(3) Phosphorylation in glycolysis: The cycle generating two 3-phosphoglycerate 
(3PG) from fructose-6-phosphate [8] (F6P) has the network: 

ADP 

3PG 

ATP F6P 

(53) 

The arrows are shown for convenience.  Note the relation of  this network to the a 
priori one (p---) p -  1), eq. (33b). 

(4) The Lotka-Volterra 2 model, discussed by Glansdorff  and Prigogine [7] 
in connect ion with chemical  oscillation, is 

2The model was originally developed for ecological predator-prey kinetics, which brings us to remark 
that the network theory we have developed in ref. [1] and here is applicable also to other fields such 
as ecology and economics. 
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A + X  --~ 2X 

X + Y  --~ 2Y 

Y ---) B 

O V R : A  ~ B 

(N54)  

with the turbulent network: 

and its skeleton 

A X 

B 

(N54)  

($54) 

Note the close relation of (N54)  to the network eq. (37c) we derived a priori. 
(5) Higgins model [19] of oscillations in the glycolytic cycle: The mechanism 

is 
A ---) F1P 

F1P + E a ----) X 

X ~ F 2 P + E  a (M55) 
F 2 P + E  i ----) E a 

(F2P ---) G) 

O V R  : A + E 1 ~ E a 

+(F2P :=~ G) 

with A = glucose; F1P, F2P - fructose-l- and-2-phosphate; E,, E i = active and inactive 
forms of  the enzyme; X - complex; G - glyceraldehyde 3P. 

A 

F1P 

El 

X 

(N55) 



362 O. Sinano~,lu, Networks for chemical mechanisms 

and 

($55) 

(N55)  is topologically equivalent by [p ---> 19- 1] to 

(N55') 

with the 

($55') 

Network (N55)  is one of the a priori ones in fig. 5, derived in eq. (51b). The 
(N55 ' )  is the one in eq. (38). 

12. A general topological feature of models for chemical oscillations, instabilities, 
and self-replication with homeostasis 

A number of diverse mechanisms or cycles have been proposed in connection 
with oscillations, instabilities, fedback, replication, etc. by various authors. We 
gave a few of the examples above. 

Although the networks often look quite different in different models (compare, 
for example, (N54)  and (N55)),  we note that in each case including other examples 
not mentioned here, the skeletons are topologically r-equivalent with r = 2 and to 

(56) 

(cf., e.g., eqs. (53), (52) with the CoA split as it does, (54) and (55)). 
On the other hand, by the method of this paper we have seen that it is possible 

to generate a priori the whole class of such r = 2 networks. Thus, other models can 
systematically be constructed with the given topological features. 
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It remains to be seen whether the class of {N} of eq. (56)is  necessary 
and/or sufficient to obtain the particular dynamical behaviour and what, if any, 
other classes exist. More generally, the relation of various (r) and (r + R) classes 
to dynamical behaviour, kinetics, and instabilities needs further examination. 
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